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Abstract: The conventional way of mapping carbon distribution in a field is by analyzing 

discrete soil cores, collected by covering the field either in a random or grid pattern. To 

optimally deploy the new instrumentation for in situ soil carbon analysis based on Inelastic 

Neutron Scattering (INS), a non-destructive system able to contiguously scan large areas, a better 

functional description of the carbon concentration in a field is necessary. In particular, its three-

dimensional continuous distribution of carbon in a field is required for: a) complete system 

simulation, and b) assessing the deployment protocol of the new system that would minimize the 

error propagation. Here, we compare our results from spatial regression with those from ordinary 

kriging, a widely used method for spatial interpolation of the field data, to illustrate the 

possibility of fitting three-dimensional carbon functions based on using experimental data from 

conventional instrument. Such a functional description of carbon concentration should optimize 

the efficiency of further analyses of soil carbon by the INS system. 

 

1. Introduction 

 

The conventional way of mapping carbon distribution in a field is by analyzing discrete soil 

cores, collected by covering a field in a grid or random pattern. The cores subsequently are 

sectioned into pieces of 5 or 10cm in length, homogenized and analyzed for carbon content, thus 

obtaining a three dimensional (3D) data set of carbon content. More often then not the carbon 

content in depths (z direction) is projected onto the field’s surface at each sample spot (x,y) and 

the projected carbon content is treated as the response variable associated with coordinates (x,y) 

in the field, producing a modified 2D data set, notice that bias might be introduced when changes 

in soil bulk density are ignored. Then, applying ordinary kriging to the 2D data predicts the value 

of response variable at any un-sampled spot. A new instrument being developed for in situ soil 

carbon analysis based on Inelastic Neutron Scattering (INS) (Wielopolski and Orion, 2000) can 
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detect carbon concentration in a large field by multiple stationary measurements of large 

volumes of about 0.3 m3 or by continuously scanning the entire field. The INS system requires a 

functional description of the carbon concentration in the field for the purpose of: a) simulation of 

the entire system and b) assessing properly the error propagation. Instead of discrete description 

of the sampled points we propose to fit a regression model to the original 3D data. This model 

should optimize the efficiency of further analyses of soil carbon by the INS instrument, and 

thereby, may afford additional insight into the structure of carbon distribution. We compare our 

results from spatial regression with those from ordinary kriging  (Issaks and Srivastava, 1989, 

Nielsen and Wendroth, 2003), a widely used method for spatial interpolation, to illustrate the 

possibility of fitting three-dimensional carbon functions based on using experimental data from 

conventional instrument. 

 
2. Regression Model 
 
In order to obtain a 3D regression model of carbon concentration and coordinates (x, y), depth 

(z), we proposed to fit models in two steps. 

 

2.1 Regression Model Step 1: Regression models of carbon concentration and depth (z) at 

each sample spot (x, y) 

Suppose we have n sample spots and the corresponding coordinates are ( ), i=1,…,n. At 

each sample spot ( ), we have the carbon concentration (C

ii yx ,

ii yx , c) data at various depth (z). The 

regression model of carbon and depth is 

                           Cc = f (z; alpha(i), beta(i), gamma(i)) + error,  i=1,…,n                                  (1) 

Function f could be exponential function based on the physical characteristics of carbon. Alphas, 

betas and gammas are the parameters obtained from the regression model. 

 

The errors at sample depth z in regression model (1) are assumed to be normally distributed and 

independent from each other; ordinary least squares (OLS) methodology is applied to estimate 

the parameters. Then Moran’s I test is performed on the residuals to determine whether 

autocorrelation exists. If it does, then we use the maximum likelihood method to include terms in 

the regression model that account for spatial autocorrelation. 
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2.2 Regression Model Step 2: Regression model of parameters and field coordinates (x, y) 

After obtaining the values of alphas, betas and gammas at all the sample spots, we applied a 

regression technique that incorporates correlated errors to get the model of the above parameters 

and field coordinates. 

                                 alpha (x,y) = g1 (x,y) + error                                                               (2) 

                                 beta (x,y) = g2 (x,y) + error                                                                 (3)  

                                 gamma (x,y) = g3 (x,y) + error                                                            (4) 

The errors at all sample spots (x, y) are assumed to be normally distributed and correlated with 

each other, producing a spatial covariance structure. In this case, OLS is no longer a valid 

method to estimate the model’s parameters. Instead, ML (maximum likelihood) (Upton and 

Fingleton, 1985) or REML (restricted/residual maximum likelihood) is appropriate. 

From models (2), (3) and (4), alpha, beta and gamma are seen to be functions of coordinates (x, 

y). 

Combining the previous function f in regression model step 1, 

                                    Cc = f (z; g1(x,y), g2(x,y), g3(x,y)) + error                                            (5) 

Thus, carbon is a function of field coordinates x, y and depth z. 

 

3. Data and Results 

Due to the lack of 3D carbon concentration data, we illustrate the above two regression model 

steps with two different data sets.   

 

3.1 Regression model step 1 on Ohio carbon data 

We took 54 sample spots of Ohio carbon data (data was provided by Prof. Lal, Ohio State 

University) and we fitted an exponential function of carbon concentration versus depth thus 

    Cc = alpha(i) *exp (-beta(i) *z) + gamma(i) + error                   (6) 

i=1,…,54                                                                                

Moran’s I test was applied to the residuals of model (6) for every sample spot. There was no 

autocorrelation significant at level 0.1. Figure 1 shows two extreme examples of fitting. The blue 

line represents the worst fitting among all 54 sample spots, while the red line is the best. Figure 1 
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demonstrates that the exponential function in model (6) is appropriate for describing the depth 

profiles of carbon. 

 

Figure1: Two examples of fitting exponential function of carbon and depth at a given sample 
spot from Ohio carbon data 
 
 

Figure 2 shows the correlation between the alphas and betas from these 54 sample spots. Alpha 

and beta exhibit a strong linear correlation, indicating that the 54 exponential functions of model 

(6) may have similar properties over the field. 
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Figure 2: Correlation of alphas and betas from 54 sample spots of Ohio carbon data 

 

3.2 Regression model step 2 on weather station temperature data  

To examine the feasibility of regression model step 2, we tested it on 2D weather station 

temperature data (data is from Upton & Fingleton, 1985). In this data set, the response variable is 

the temperature recorded at various locations, together with the recorded associated (x, y) 

coordinates. We fitted a linear regression model of the response variable (temperature) to (x, y) 

coordinates. The parameters were estimated by REML and the structure of the spatial covariance 

is assumed to be exponential.  

The temperature data shares the following properties with the carbon data:  

(i) The response variable is continuous over the field; 

(ii) The value of response variable is related to spatial locations; and,  

(iii) The response variable may be autocorrelated. 

If the linear regression model works well on weather station temperature data, we believe it 

could be applied to carbon data, thus yielding a three-dimensional functional description of 

carbon concentration. 
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The linear regression model of 2D weather station temperature (T) data is  

                                     T =18.147 + 6.2248*x - 4.8853*y + error                                            (7) 

 
3.3 Ordinary Kriging 

Ordinary kriging is a widely used method in spatial interpolation. We briefly introduce the 

principles of ordinary kriging here. (Isaaks and Srivastava, 1989) 

Suppose carbon concentration has been sampled at n locations.  

Label the locations . The coordinates of  are . nss ,,1 L is ),( ii yx

The response variable, , has n outcomes . )(),( 1 nsVsV K nvv ,,1 L

The predicted value at an un-sampled spot  is , where  are 

weights and . The prediction error at site  is . 

0s )()(ˆ
10 i

n
i i sVwsV ∑ == iw

∑ = =n
i iw1 1 0s )()(ˆ)( 000 sVsVsR −=

In ordinary kriging, the weights are based on the covariances among points in the sample, and 

the covariances between the sample points and the point to be predicted. The kriging estimator 

minimizes the prediction variance . Therefore kriging gives the 

best linear unbiased estimator. 

))()(ˆ(ˆ 00
2 sVsVVarR −=σ

 

Comparison between our regression model and ordinary kriging on the 2D weather station 

temperature data 

We compared the estimates from ordinary kriging and our regression model of the 2D weather 

station temperature data.  

Figure 3 shows leave-one-out cross validation of ordinary kriging and regression model for these 

data. 
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Figure 3: Leave-one-out cross validation of ordinary kriging and regression model for the 2D 
weather station temperature data. 
 
Allen’s predicted residual sum of squares (PRESS) of ordinary kriging and the regression model 

for the weather station data are 

                   
n
1

PRESS = ∑ = −n
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n
1

PRESS of ordinary kriging = 1.1094 

   

                   
n
1

 PRESS of regression = 0.7383 
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From the PRESS values of ordinary kriging and the regression model, we see that the 

performance of the latter on the temperature data is better than that of ordinary kriging. 

Furthermore, we randomly selected 50 un-sampled spots within the sampling region of weather 

station temperature data, and compared the predicted value of the response variable 

(temperature) from ordinary kriging and the regression model. Figure 4 shows the close 

correlation between the predicted values from the two methods.  

 
Figure 4: Correlation between predicted value of temperature from ordinary kriging and linear 
regression model from 50 randomly selected un-sampled spots. 
Regression model: Temperature=18.147+6.2248*x-4.8853*y + error 
 
The predicted values from ordinary kriging and the regression model show strong linear 

correlation, indicating they give similar results for the weather station temperature data. 

 

4. Conclusions 
 
4.1 Comparisons between the regression method and the conventional method of describing 

carbon distribution 
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(i) The regression model describes carbon profiles at continuous depth, while, in contrast the 

conventional method uses only projections of carbon concentration on to the field’s surface. 

(ii) The regression model provides a three-dimensional structure of carbon concentration while 

conventional method offers only a two-dimensional contour map. 

(iii) The regression model is simple provided that there is a systematic structure of the response 

variable over the field, which is true for carbon concentration. 

(iv) The three-dimensional function obtained by the regression model could be used in 

conjunction with a new instrument for in situ soil carbon analysis based on Inelastic Neutron 

Scattering (INS). The new system is non-destructive and can scan large areas contiguously, thus 

necessitating a functional description of carbon concentration in the field. 

(v) Ordinary kriging, which is used to derive a contour map of carbon in the conventional 

method, is more sensitive to local variation than is the regression model. 

4.2 Regression model of Ohio carbon data and weather station temperature data 

Carbon concentration is approximately an exponential function of depth at a given sample spot in 

Ohio carbon data. 

The linear regression model performs better than ordinary kriging when there is a systematic 

structure of the response variable over the field, as in the weather station temperature data. Since 

carbon concentration also has a similar systematic structure as temperature, we believe linear 

regression model could be applied to carbon data, thus offering a three-dimensional functional 

description of carbon. 

 

5. Future work 
 

We will apply the proposed two-step regression model to real three-dimensional (x,y,z) carbon 

concentration data, derive the error estimate of the proposed regression model and then compare 

this estimate to that from ordinary kriging. We will develop the application of the proposed 
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regression model to improve variogram calculations.  Furthermore, we will incorporate the 

proposed regression model into Monte Carlo simulation for the INS system. 
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